
GROUP GAIN DESIGN FOR OVERLOADED CDMA

Gianmarco Romano, Domenico Ciuonzo, Francesco Palmieri, Pierluigi Salvo Rossi

Dipartimento di Ingegneria dell’Informazione,
Seconda Università di Napoli,

via Roma, 29, 81031 Aversa (CE), Italy.

ABSTRACT
In overloaded CDMA decision-feedback receivers may have
a bit error probability of at least one user that “floors”, i.e.
cannot be reduced to zero when the signal-to-noise ratio
increases. This problem is a consequence of the overloaded
nature of the CDMA system, characterized by a very high
correlation among users’ signatures and corresponding high
multiuser interference that the receiver is not able to can-
cel. In this paper we show that “floors” can be avoided
by properly controlling each user’s gain and propose an
algorithm that, grouping users, sets gains in such a way that
all users have a BER that vanishes. Simulations show that
group decision-feedback receivers with simple conventional
receivers as constituent blocks, have performances very close
to those of the optimal ML receiver.

I. OVERLOADED CDMA

Consider the signal received from M users over an AWGN
channel [1]

y (t) =
M∑

m=1

ambmfm (t) + σn (t) , (1)

where bm ∈ {−1, +1} is the information bit transmitted
by the m-th user, fm (t) is the corresponding signature
waveform, am > 0 is the user’s signal amplitude and n (t)
is additive white Gaussian noise with zero mean and unit
variance. A discrete-time standard model can be obtained if
the received signal is projected onto a set of N orthonor-
mal basis functions that span the signatures {fm (t)}M

m=1.
Within this model N is also called the spreading factor (or
processing gain) of the CDMA system. The resulting vector
model is

y = FAb + σn (2)

where y is the N -dimensional observed column vector,
b = (b1, ..., bM )T is the M -dimensional binary information
vector, n is the N -dimensional noise and the matrix A =
diag (a1, ..., aM ) controls the energy for each user. Matrix
F contains in each column the “signatures” for the various
users. The model allows for the real-valued users’ signatures
to have different energies. When M < N the problem

is “underloaded”, for M = N is “fully-loaded” and for
M > N “overloaded”.

We focus on overloaded CDMA systems because we are
concerned with the strong limitations that exist with linear
detection in such systems. Limitations of linear detectors
where first observed by Kapur and Varanasi in [2] with
reference with MMSE detection and (generalized) Welch
Bound Equality signatures and then extended to any set of
signatures by Varanasi et al. in [3]. A more general result,
for binary constellations, has been found by Romano et al. in
[4]: for any overloaded synchronous CDMA system, at least
one user has  a  probability of error that does not  vanish  as
the channel noise goes to zero.

It is well known that the optimal detector is a standard
minimum distance classifier. It does not suffer from the
“floor” problem, but has an exponential complexity in the
number of users [1]. Linear detectors have limited com-
putational complexity and are often employed in practical
underloaded systems, but in overloaded CDMA are not
asymptotically efficient.

Limitations of linear receivers in overloaded CDMA have
an insightful geometric interpretation in terms of linear
separability of sets of points. Look at Figure 1, where
projections of constellation points into the signal space are
shown for a system with a spreading factor N = 2 and a
number of users M = 5. The 25 = 32 constellation points
are generated via FAb, with A = I and a matrix F chosen
(arbitrarily) to be

F =
( −0.76 0.89 −0.81 −1.0 0.79

0.65 −0.46 −0.59 0.03 −0.62

)
. (3)

The constellation points are drawn with a circle for a +1
and a cross for a −1 for each user. We have five pictures
for the five partitions that represent the associations to the
5 bits (b1, ..., b5). The additive Gaussian noise disperses
the observations around each signal point (in a spherical
fashion) and it is not shown in the figure. Linear detectors
can be geometrically interpreted as hyperplanes that split the
projected subspace of users’ signals into two semispaces for
each user. In Fig. 1 only user 3 can be linearly decoded, since
a hyperplane can separate the two subsets and decode b3; all
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other users, instead, are not separable via a linear classifier.
The asymptotic convergence of the error probability to zero
as the signal-to-noise ratio grows is guaranteed when all
users are separable by some hyperplane, a condition that
for CDMA underloaded is frequently satisfied, but for the
overloaded case cannot exist for all users simultaneously [4].
The consequence of having users that are not asymptotically
linearly separable in overloaded CDMA is that the joint BER
“floors” as the signal-to-noise ratio increases. This does not
depend on the choice of linear receivers, users’ signatures
and power distribution: the limitation in the performances
of overloaded CDMA with linear receivers is inherent to the
overloaded nature of the problem [4].

The outline of the paper is as follows. We briefly recall
decision-feedback receivers in section II and state formally
geometric interpretation and properties of linear receivers
in section III. The main contribution of the paper in in
section IV where the group gain design algorithm is pre-
sented. In section V results from simulations are shown and
commented and in section VI conclusions are drawn.

II. DECISION-FEEDBACK DETECTORS

Among non-linear detectors with limited complexity,
decision-feedback detectors [5] are a good solution, since
they show a good trade-off between computational complex-
ity and performances in underloaded CDMA. However, their
asymptotic efficiency need to be well studied and understood
in overloaded CDMA because in some cases they might
show up the “floor” problem anyhow [6], [4]. The decision-
feedback receiver makes decision sequentially and uses the
already acquired users to cancel progressively the multiuser
interference (Fig. 2). Decision can be made one user at a time
or groupwise. In the latter case the receiver is said group
decision-feedback detector. The computational complexity
is further limited if we assume that the decision about users
belonging to the same group is made by a linear receiver
(linear decision-feedback detector).

The simplest detector is based on linear discriminators
ci matched to the users’ signature (i.e. ci = fi) with no
feedback. We call this detector conditional conventional
detector (CC detector). At the output of each linear filter a
hard decision, with a threshold that depends on the previous
decisions, is made and passed to the next blocks. The main
advantage of CC detector is low complexity, but, for generic
constellations, detectors with much better performances ex-
ist.

The choice of MMSE filters [1] as basic building blocks
leads to a conditional MMSE detector (CMMSE detector).
Hard decisions are made by each classifier and filters ci are
fixed. The computation complexity of such a detector is also
very limited.

If the hyperplanes are computed dynamically at each step
for each user as the MMSE solution on previous hard or
soft decisions, we have a sort of turbo detector. The PDA

User 1 User 2 User 3

User 4 User 5

Fig. 1. Projections of the constellation points corresponding
to the CDMA system with spreading factor N = 2, M = 5
users, signatures the columns of F as defined by eq. (3) and
A = I.

Fig. 2. The group decision-feedback structure for a CDMA
system.

receiver, for example, is inspired by such an idea [7] and
performs at each stage a sequential iteration through the
users computing dynamically the filters for a subset of users
on the knowledge of the a posteriori probability of the
others. More iterations may be necessary and the users’
order may be modified dynamically. While nearly-optimal
for underloaded CDMA, in the overloaded case may present
poor performance [4].

III. LINEAR SEPARABILITY

We state now more formally the idea of user linear
separability [4]. We indicate the set subtraction operator by
the minus sign, e.g. U −{i} is the set U without its element
i.

Definition 1: Let U = {1, 2, ..., M} be a set of users.
User i ∈ U is asymptotically linearly separable (or simply
linearly separable) if for σ2 → 0 there exists an N -



dimensional vector ci = (c1i...cNi)T :{
cT

i y > 0 if bi = 1
cT

i y < 0 if bi = −1 ∀ bj ∈ {−1, +1} , j �= i. (4)

Under linear detection and with the decision rule b̂i =
sgn

(
cT

i y
)

for each user i, it can be proved that the users’
geometrical separability is a sufficient and necessary con-
dition to have a vanishing single-user BER. An alternative
equivalent condition is provided by the following theorem
(for the proof see [4]).

Theorem 1: If user i is asymptotically linearly separa-
ble, there exists an N -dimensional vector ci = (c1i...cNi)T

that satisfies the following condition

ai|cT
i fi| >

∑
j∈U−{i}

aj |cT
i fj | (5)

In reference to the normalized linear filters vi =
ci/

√
cT

i ci, we define the linear margin as

δi = ai|vT
i fi| −

∑
j∈U−{i}

aj |vT
i fj |. (6)

Therefore user i, to be asymptotically separable, must have
a positive margin. The linear margin is strictly related to
another parameter of interest in CDMA systems, which is the
asymptotic effective energy (AEE), as defined by Varanasi
in [5], for linear receivers. Denote with Ei the AEE for user
i, then

Ei = max 2 {0, δi} . (7)

Therefore δ2
i represents the AEE when user i is separable. Ei

is zero when condition (5) does not hold, and consequently
Ei > 0 becomes a sufficient and necessary condition for
separability. At least in the case of linear receivers, the linear
margin represents a sort of distance from the separability
condition to hold, i.e. it can tell how far from separability
one user is.

By defining H = VT FA, where V is the N ×M matrix
that has as columns the normalized linear filters vi, i =
1, 2, . . . , M , separability condition for user i can be rewritten
as

|hii| >
∑
j �=i

|hij | , (8)

where hij is the generic element of the M × M matrix H:
user i is linearly separable if the i-th row of H is diagonally
dominant.

In overloaded CDMA matrix H is cannot be fully diago-
nally dominant [4]. In general a user can become asymptoti-
cally efficient by increasing its power, i.e. increasing ai, but
this can affect negatively the others. In overloaded CDMA
some users are affected so much by multiuser interference
that it is impossible to have a probability of error that
asymptotically goes to zero for all users at the same time.

The group detection in linear decision-feedback receivers
assumes that decisions on previous groups are already made

and the group probability of error asymptotically goes to
zero if users in the group are linearly separable. As an
example, look at the constellation in Fig. 1. After a decision
on user 3 has been taken, a linear detector may be used to
make a decision on user 4, but not on the others. Further
conditioning is necessary.

Definition 2: Consider a subset G ⊂ U of users and
suppose that the bits for the users in G are all known, i.e.{
bj = b∗j , j ∈ G}

. Then define

µ∗
G =

∑
l∈G

alflb∗l . (9)

We say that user i ∈ U − G is linearly separable, condi-
tionally on G, if for σ2 → 0, there exists an N -dimensional
vector ci = (c1i...cNi)T :{

cT (y − µ∗
G) > 0 if bi = 1

cT (y − µ∗
G) < 0 if bi = −1

∀ bj ∈ {−1, +1} , j ∈ U − G − {i} (10)

Therefore a conditionally linearly separable user can be
detected with a linear classifier after the users in G have
been “subtracted out”. The decision rule for user i becomes
sgn

(
cT

i

(
y − µ∗

G
))

≷ 0.
The condition on matrix F and the gains in A is similar to
the unconditioned case and it is described by the following
extension of Theorem 1.

Theorem 2: User i is linearly separable condition-
ally on G if there exists an N -dimensional vector ci =
(c1i...cNi)T :

ai|cT
i fi| >

∑
j∈U−G−{i}

aj |cT
i fj |. (11)

Similarly to the unconditional case, we define the conditional
linear margin

δGi = ai|vT
i fi| −

∑
j∈U−G−{i}

aj |vT
i fj |, (12)

IV. GROUP GAIN DESIGN ALGORITHM

We have already shown that by simply changing the gain
parameters in A, as for example in systems where some
power control mechanism is implemented, we can achieve
conditional separability [4]. We assume that we know the
signatures F, and that they cannot be changed. They may
be imposed by channel parameters or other constraints. The
possibility and capability of changing the gains is crucial
especially for overloaded CDMA systems because, as we
show in the following, by choosing appropriately the set of
gains any set of M users with any set of signatures F can
always be made conditionally linearly separable. In other
words it is possible by adjusting the gains to make a linear
group decision-feedback receiver asymptotically efficient
even for overloaded CDMA. The algorithm will prove useful



also for underloaded CDMA systems (they do not generally
suffer from the “floor” problem), because adjusts the gains
such that we can improve asymptotic efficiency by imposing
appropriate linear (conditional) margins.

The group gain design algorithm proposed here, general-
izes the algorithm in [4] by setting users’ gains groupwise
instead of each user at time. The algorithm follows these
steps:

1) choose all δi’s, i ∈ U ;
2) choose any subset of N (1) ≤ N users, I(1) ={

i
(1)
1 , . . . , i

(1)

N(1)

}
, whose signatures are linearly inde-

pendent;
3) set G(1) = I(1);
4) for each user i ∈ I(1) set the corresponding gains by

solving the linear system:

ai

∣∣vT
i fi

∣∣ − ∑
j∈G(1)−{i}

aj

∣∣vT
i fj

∣∣ = δi (13)

5) set n = 2;
6) find any subset of N (n) ≤ N users, whose signatures

are linearly independent, I(n) =
{

i
(n)
1 , . . . , i

(n)

N(n)

}
;

7) set G(n) = G(n−1) ∪ I(n);
8) for each user i ∈ I(n) set the gains as

ai

∣∣vT
i fi

∣∣ − ∑
j∈G(n)−{i}

aj

∣∣vT
i fj

∣∣ = δi (14)

9) set n = n + 1 and repeat steps 6), 7) and 8) until all
users have been included in G(n);

The algorithm sets jointly the gains of all users belonging to
the same group. The size of the group has a maximum that
can be no greater than N . This is because for overloaded
CDMA we cannot have more than N users (conditionally)
linearly separable. In general it might be smaller than N
and is a design parameter. Having groups of size greater
than 1 reduces the number of conditioning in the decision-
feedback detector and thus improves its performances, when
hard decisions are made, since error propagation is limited.

The idea is that by conditioning we decompose the de-
tection problem of an overloaded CDMA into the detection
of more underloaded CDMA systems. Consider the struc-
ture shown in Fig. 2: each linear block makes a (soft or
hard) decision on a set of users based on the decision on
another subset of users (and the received signal); each block
represents the detector for an underloaded CDMA. For the
receiver to succeed there must exist a users order for which
each underloaded subsystem is asymptotically efficient. The
group gains design algorithm reverses the conditioning of the
groups in setting the gains because the setting of the margin
for user i requires the gains for the users already examined
and the known output values for all the others. The imposed
conditional margins {δi}, i ∈ U , are design parameters of
the algorithm and they can be regulated to increase as much
as possible the asymptotic efficiency.

The algorithm clearly depends on the specific choice of
linear filters. For example, in the case of MMSE filters
(CMMSE design), we have that the matrices of coefficients
of the linear systems (13) and (14) that must be solved to
get the gains are diagonals. To see this, consider the linear
system at step 4) of the algorithm, that can be express in
matrix form asTa = δ. Note that the matrix T can be
obtained from VT F = D−1/2CT F, and that, for MMSE
detectors in underloaded CDMA, CTFA = I. Therefore we
obtain that D−1/2CTF = D−1/2A−1, which is diagonal
and thus also T is diagonal.

When the linear filters are chosen to be the signatures (CC
design), the matrix T is diagonal only when the signatures
associated to the users in the same groups are orthogonal.
In general the crosscorrelation among signatures determines
the presence of non diagonal elements. Note that matrix T
is symmetric and the solutions of the linear systems need to
be positive. The determination of all necessary and sufficient
conditions on T for the solution to be positive are based on
the structure of the matrix and will be reported elsewhere.

V. SIMULATIONS

We implemented and used the above algorithm in a sim-
ulated scenario of M = 5 users and processing gain N = 2,
with a group decision-feedback detector and decisions made
within each group by conventional receivers (CC detectors).
The set of signatures are randomly generated and kept fixed
for all the simulations. We have compared two sets of gains,
obtained with the proposed algorithm, with the system with
all equal gains: one with groups of size one; the other with
groups of size N . All sets of gains are subject to the same
sum-power constraint and the (conditional) linear margin are
set to 1.

Results are reported in Figs. 3, 4 and 5, where perfor-
mances in terms of joint BER versus average energy per
bit-to-noise ratio are shown. More specifically in Fig. 3
we show that the system under consideration with no gain
design suffers from the BER “floor” for the CC detector, but
does not for the CMMSE detector. When gains are designed
according our algorithm, as shown in Figs. 4 and 5, both
detectors are asymptotically efficient. Since we change the
gains distribution we have also an improvement with the
optimum receiver. The group size is a design parameter
of the algorithm, we have run simulations for two values
of group size. We note that when the group size is equal
to its maximum value, i.e. the processing gain N , the
CC detector performs very well and quite close to the
ML receiver, having the great advantage of having a low
computational complexity. In all the results the CMMSE
detector performances (with the same set of gains) show that
our algorithm can be used to improve the performances of an
already asymptotically efficient receiver and that the filters
used in the algorithm do not need to be the same of those
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Fig. 3. Simulation results a CDMA system with spreading
factor N = 2 and M = 5 users and no gain design (A = I).
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Fig. 4. Simulation results for a CDMA system with spread-
ing factor N = 2 and M = 5 users. Gains are obtained
from the gain design algorithm with vi = fi (CC design)
and group sizes equal to 1.

employed by the receiver. With any group size the CMMSE
is able to have nearly-optimal performances.

VI. CONCLUSIONS

In overloaded CDMA, the joint BER might not go to
zero as the signal-to-noise ratio increase. While this cannot
be avoided with linear receivers, non-linear detectors like
linear decision-feedback receivers need careful gain control
to avoid “floors”. We propose an algorithm that sets the
gains groupwise in a synchronous CDMA system in such
a way that the joint BER reduces when the channel noise
goes to zero. Simulations show that a conventional decision-
feedback detector not only can be made asymptotically
efficient, but also that its performances are very close to
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Fig. 5. Simulation results for a CDMA system with spread-
ing factor N = 2 and M = 5 users. Gains are obtained
from the gain design algorithm with users’ signatures as
hyperplanes, i.e. vi = fi (CC design) and group sizes equal
to N .

the optimum, despite its low computational complexity.
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